翻訳と辞書
Words near each other
・ Jacobel Glacier
・ Jacobellis
・ Jacobellis v. Ohio
・ Jacobello da Messina
・ Jacobello del Fiore
・ Jacobello di Bonomo
・ Jacobena Angliss
・ Jacobethan
・ Jacobetty Rosa
・ Jacobi
・ Jacobi (crater)
・ Jacobi (surname)
・ Jacobi coordinates
・ Jacobi eigenvalue algorithm
・ Jacobi elliptic functions
Jacobi field
・ Jacobi form
・ Jacobi group
・ Jacobi identity
・ Jacobi integral
・ Jacobi matrix
・ Jacobi Medical Center
・ Jacobi method
・ Jacobi method for complex Hermitian matrices
・ Jacobi operator
・ Jacobi polynomials
・ Jacobi Robinson
・ Jacobi rotation
・ Jacobi set
・ Jacobi sum


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Jacobi field : ウィキペディア英語版
Jacobi field
In Riemannian geometry, a Jacobi field is a vector field along a geodesic \gamma in a Riemannian manifold describing the difference between the geodesic and an "infinitesimally close" geodesic. In other words, the Jacobi fields along a geodesic form the tangent space to the geodesic in the space of all geodesics. They are named after Carl Jacobi.
==Definitions and properties==

Jacobi fields can be obtained in the following way: Take a smooth one parameter family of geodesics \gamma_\tau with \gamma_0=\gamma, then
:J(t)=\left.\frac\right|_
is a Jacobi field, and describes the behavior of the geodesics in an infinitesimal neighborhood of a
given geodesic \gamma.
A vector field ''J'' along a geodesic \gamma is said to be a Jacobi field if it satisfies the Jacobi equation:
:\fracJ(t)+R(J(t),\dot\gamma(t))\dot\gamma(t)=0,
where ''D'' denotes the covariant derivative with respect to the Levi-Civita connection, ''R'' the Riemann curvature tensor, \dot\gamma(t)=d\gamma(t)/dt the tangent vector field, and ''t'' is the parameter of the geodesic.
On a complete Riemannian manifold, for any Jacobi field there is a family of geodesics \gamma_\tau describing the field (as in the preceding paragraph).
The Jacobi equation is a linear, second order ordinary differential equation;
in particular, values of J and \fracJ at one point of \gamma uniquely determine the Jacobi field. Furthermore, the set of Jacobi fields along a given geodesic forms a real vector space of dimension twice the dimension of the manifold.
As trivial examples of Jacobi fields one can consider \dot\gamma(t) and t\dot\gamma(t). These correspond respectively to the following families of reparametrisations: \gamma_\tau(t)=\gamma(\tau+t) and \gamma_\tau(t)=\gamma((1+\tau)t).
Any Jacobi field J can be represented in a unique way as a sum T+I, where T=a\dot\gamma(t)+bt\dot\gamma(t) is a linear combination of trivial Jacobi fields and I(t) is orthogonal to \dot\gamma(t), for all t.
The field I then corresponds to the same variation of geodesics as J, only with changed parameterizations.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Jacobi field」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.